主板供电全解析 芯片和分立器件详细讲解
来源:互联网 发布时间:2021-08-23
分享至微信


上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容 和起保护作用的扼流圈等。下面我们分开来看。

(图)PWM控制器(PWM Controller IC)
在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。 
MOSFET驱动芯片(MOSFET Driver)
MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。 
早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。

下面这种有三个引脚的小方块是一种常见的MOSFET封装,称为D- PAK(TO-252)封装,也就是俗称的三脚封装。中间那根脚是漏极(Drain),漏极同时连接到MOS管背面的金属底,通过大面积焊盘直接焊在 PCB上,因而中间的脚往往剪掉。这种封装可以通过较大的电流,散热能力较好,成本低廉易于采购,但是引线电阻和电感较高,不利于达到500KHz以上的开关频率。

下面这种尺寸小一些的黑方块同样是MOSFET,属于SO-8系列衍生的封装。原本的SO-8封装是塑料封装,内部是较长的引线,从PN结到PCB之间的热阻很大,引线电阻和电感也较高。现有CPU、GPU等芯片需要MOSFET器件在较高电流和较高开关频率下工作,因而各大厂家如瑞萨、英飞凌、飞利浦、安森美、Vishay等对SO-8封装进行了一系列改进,演化出WPAK、LFPAK、LFPAK-i、 POWERPAK、POWER SO-8等封装形式,通过改变结构、使用铜夹板代替引线、在顶部或底部整合散热片等措施,改善散热并降低寄生参数,使得SO-8的尺寸内能通过类似D- PAK的电流,还能节省空间并获得更好的电气性能。目前主板和显卡供电上常见这种衍生型。在玩家看来,SO-8系的YY度要好于D-PAK,但实际效果要根据电路设计、器件指标和散热情况来判断,而原始的SO-8因为散热性能差,已经不适应大电流应用了。

另外,近日IR公司的DirectFET封装也在一些主板上出现了,同样是性能非常棒的封装,看上去也非常YY,找到实物大图以后会补充进来。

输出扼流圈(Choke),也称电感(Inductor)。每相一般配备一颗扼流圈,在它的作用下输出电流连续平滑。少数主板每相使用两颗扼流圈并联,两颗扼流圈等效于一颗。主板常用的输出扼流圈有环形磁粉电感、DIP铁氧体电感(外形为全封闭或半封闭)或SMD铁氧体电感等形态,上图为半封闭式的DIP铁氧体功率电感。


上面是两种铁氧体电感,外观都是封闭式。左边是DIP直插封装,内部为线绕式结构,感值0.80微亨(“R”相当于小数点)。右边是SMD表贴封装,内部只有一匝左右的导线,感值0.12微亨要小很多。



上面是三种环形电感。环形电感的磁路封闭在环状磁芯里,因而磁漏很小,磁芯材料为铁粉(左一)或Super-MSS等其它材料。随着板卡空间限制提高和供电开关频率的提高,磁路不闭合的铁氧体电感、乃至匝数很少的小尺寸SMD铁氧体功率电感以其高频区的低损耗,越来越多地取代了环形电感,但是在电源里因为各种应用特点,环形电感还在被大量使用。


Hi-c Cap
此外还能见到钽电容和钽-聚合物电容(图:三洋POSCAP系列)等,性能也比一般的铝电解电容优异得多,钽-聚合物电容具有好于一般固态电容的ESR、高频特性和更小的尺寸。网上已经有很详细的介绍。 
插座中央这种电容叫做多层陶瓷电容(MLCC),它的单颗容量比电解电容小很多,然而高频特性好很多,ESR很低。电解电容高频特性不好,因而主板CPU插座周围和CPU插座内部会有几十颗MLCC用作高频去耦,和大容量的电解电容搭配,提供更好的滤波效果和动态性能。近年来高端板卡开关频率较高的数字供电电路,就利用MLCC高频特性好的特点,直接使用很多颗MLCC进行滤波,但是总容量上不去,只有很高的开关频率才适合用。[page]



输入电路有时会串联一个扼流圈。这个扼流圈的作用是防止负载电流的瞬态变化影响到上一级电路。它的形状可能是线圈绕在棒子上,也可能是绕在环形磁芯上的线圈。

还可能是封闭式的。很多主板上并没有这个扼流圈,或者有焊位,但把它省略掉了。此外在供电部分我们还可以看到一些细小的起保护、缓冲等作用的料件。
好了,了解完这些主要元件,下面我们来看看如何识别CPU供电电路的相数。
六相供电的技嘉EP45-UD3。我们可以看到六个扼流圈,MOSFET共18个正好每3个和一个 输出扼流圈搭配。我们还能看到每相旁边小小的MOSFET Driver芯片。最后我们还看到CPU插座一角方形的PWM主控芯片,它是intersil ISL6336,支持最高到6相供电。由此我们可以确认这是6相供电,每相MOSFET采用一上两下配置的主板。每相使用的三颗MOS管属于SO-8衍生型封装,是具备低导通内阻(Low Rds-on)的MOSFET。

四相供电的技嘉EP43-DS3L,每相一颗扼流圈、一颗Driver和三颗MOSFET都能对号入座。主控芯片是最高支持4相工作的intersil ISL6334,因而它是4相供电。

映泰Tforce 945P,三相供电,使用集成了三相MOS驱动的intersil ISL6566主控,每相三颗MOSFET。同样我们也没有见到输入扼流圈。

映泰TA790GX 128M,四相供电,使用集成了三相MOS驱动的intersil ISL6322主控,每相三颗MOSFET,第四相的MOSFET Driver放在MOSFET旁边(圈出来了)。类似的还有映泰TP43D2-A7,同样是ISL6322的方案。

昂达魔剑P35(同样地还有七彩虹C.P35 X7),五相供电,每相搭配两颗MOSFET,使用Richtek的主控芯片RT8802搭配两颗RT9619 MOSFET Driver,RT8802是支持2~5相的PWM控制器,同时整合了三相MOSFET Driver,第四相和第五相就要外挂Driver芯片了。
老一些的MOSFET Driver芯片使用HIP6602这样单颗集成两相MOS驱动的芯片,也就是说两相的驱动整合到一颗芯片里。它的外观可能是双列14引脚(SSOP-14)或四面共16引脚(QFN-16)。下面是几个例子。

梅捷SY-15P-FG,四相供电每相三颗MOS管,PWM主控芯片是intersil ISL6561,每两相使用了一颗14引脚的driver(已圈出)

升技AN8,四相供电,MOS管覆盖在散热片下面。我们同样可以看到每两相使用的一颗Driver(已圈出),这里取代HIP6602的是intersil ISL6614芯片。Intersil的某款PWM主控这里被贴上了μGURU标签,所以我们看不到型号。

磐正8RDA3I PRO,两相供电,每相搭配三颗MOS管和两颗并联的扼流圈(这个我们后面会提到)。它的供电使用了intersil HIP6302(上图左边)主控搭配一颗HIP6602驱动芯片来控制两相供电。尽管总共有四颗输出扼流圈,由于主控是只支持到2相的HIP6302,两相Driver也只有一颗,MOS管总共6颗只能分给两相而不是四相,我们知道这是一个两相而非四相的供电方案。
我们并不清楚厂商用两个电感并联代替一个电感有什么技术上的理由。两个电感可以允许两倍大的电流通过,相同大小的损耗分担到两个电感上每个电感温升更小,不过和真正分成两相相比,纹波还是要输一些。

(图:技嘉DQ6)

(图:梅捷超烧族OC3P45-GR)

- PWM主控芯片和driver数量都表明这是两相供电的方案;
- 6个MOSFET,只能是两相,每相3个,而不可能是4相。


翔升P45T
下面这个就比较tricky了,翔升P45T。8个扼流圈8对MOS管,怎么看都是8相供电嘛!不过等等,我们可以找到它的主控芯片是支持4相控制的ISL6312,旁边还能找到1颗MOSFET Driver(已圈出)。这是典型的使用内置3组driver和一个外置driver控制的四相电路,每相两个扼流圈并联,4颗MOSFET每两个并联为一组。类似地还有技嘉DQ6系列。这个“12相”供电是由支持6相控制的ISL6327/ISL6336控制芯片配合6个ISL6609 driver芯片驱动的,通过主控芯片的规格和driver数量我们可以得知它是6相供电。技嘉官方已经承认DQ6系列的设计是“虚拟12相”。早期 DQ6主板每相配备4颗MOSFET,到了EX48-DQ6上,每相配备了5颗,这样通过MOSFET数量也能自动排除12相的可能。
容易被混淆的输入扼流圈(Input Choke)前面我们提到供电的输入部分可能有一个扼流圈。通常它紧挨着+12V输入的4pin/8pin插座。
这个扼流圈常常以磁棒的形态出现。

由于这种外观和输出扼流圈差别较大,一般不会混淆。——甚至有些人意识不到这是一个电感。
然而有的时候它也是一个封闭电感的样子
如上图,如果它和输出扼流圈靠得比较近,就容易被认错了。不过一般来讲输入扼流圈的感值和输出扼流圈不大一样,这会体现在标记上。同时因为输入扼流圈的电流小一些,所以外观尺寸上也会不大一样。
有的时候它是个环形的扼流圈,这种情况就更容易认错了。

青云PX915 SLI
这张图我们可以看到供电的输出扼流圈和输入扼流圈都是环形,绿色磁芯,只是输入扼流圈的绕数比输出扼流圈少一些。注意到这点区别就不会把它当成四相供电的主板。

三相供电么?不,这是两相,输入扼流圈的磁芯和绕线外皮颜色都有点差异。当年有很多编辑会把这种主板当作三相供电。

磐正8RDA+
曾经非常流行的EPOX 8RDA+。尽管输入扼流圈的外观和个头都与输出扼流圈相差无几,从它的位置以及MOS管总数可以把它和输出扼流圈区分开来。

梅捷SY-15P-FG供电部分相信没有人会把它认成5相供电了。只要注意位置和外观的差异,识别输入扼流圈并不是难事。
真8相和真16相供电是如何实现的?("True 8-phase/16-phase" voltage regulators)主流的PWM控制芯片最多支持到6相(本文完成前夕,台湾uPI已经推出了原生12/8相的VR11控制器uP6208)。然而华硕很高调地宣称他们的主板具备真8相甚至真16相供电,这是如何做到的?

在华硕8相和16相供电的主板上,我们确实能找到每相对应的MOSFET driver芯片,也就是说每相有一颗独立的driver在驱动。不幸的是PWM控制芯片表面被华硕自家的编号以及EPU字样给覆盖了,这样我们也就不知道PWM控制芯片的规格。
台湾网友LSI狼对8相供电的早期型号A8N32 SLI Deluxe进行过分析。A8N32 SLI Deluxe的主控芯片是支持4相工作的ADI ADP3186,配合了ADG333A四路的二选一开关。据我分析这样的工作方式是让ADP3186输出4相的相位信号,单刀双掷开关在第一个周期里把四相信号输送给第1、2、3、4个driver,第二个周期里把四相信号输送给第5、6、7、8个信号。这样8相的driver就能错开相位轮流导通,实现 8相工作方式——第一代8相供电主板就是这样实现的。由此推测,真16相的做法可能是两个8相交替开关动作或者4个4相交替动作。在 P5Q主板的8相供电电路中我们只找到一颗打着EPU2标记的PWM控制芯片,而没有看到类似电子开关的额外芯片。在P5Q Deluxe这样16相供电设计的主板上除了EPU还能找到一颗名为PEM的芯片。对它们的具体功能我们找不到公开资料,结合华硕的说法来看,EPU是一颗原生控制8相的PWM控制器,而PEM作为电子开关一类的器件负责将8相信号送到16相的驱动芯片实现16相与8相可切换的工作方式。
K10 的分离供电与N+1相供电设计(K10\'s Split-Plane design and "N+1" phase power delivery circuits)AMD K10处理器引入了分离电源层(Split Power Plane)的设计。分离电源层是指,CPU内部被划分成处理器内核(每个核心以及L2缓存)和片上北桥(L3缓存、HTT3.0控制器、内存控制器等等)两部分,处理器内核使用名为VDD的电源,片上北桥使用名为VDDNB的电源,这两个电源的工作电压我们分别称为内核电压和北桥电压。在不同的工作状态下两组电压可以独立地进行控制,实现更好的节能效果。
要获得两组独立的电压,就需要两个独立的供电电路。在分离供电设计的主板上,一个传统的N相供电电路根据VID信号中内核VID的指示提供VDD电源,另外还有一个独立的单相供电电路根据VID中北桥VID的指示提供独立的VDDNB电源,这就是所谓“N+1相”设计。N+1相供电设计的主板在插上单一电源设计的K8 CPU时,只有N相的VDD电源工作,产生VDD电压提供给CPU。
K10的供电需求对VDD电源的输出电流要求最高可达100A,TDP最高达到140W(Phenom 9950 2.6GHz),需要四相供电支持,否则供电电路会发热过大不够稳定。因此K10主板常见的供电设计是4+1相,面向低端的整合主板常见3+1相的设计,而部分超频主板甚至做到了5+1相。
我们以技嘉MA770-DS3H的供电为例看看如何判断N+1相供电。

K10发布以后intersil推出了对应的混合式电源管理方案ISL6323和ISL6324,这两个芯片都支持最高4+1相供电设计,如果看到这个控制芯片,那基本上就是N+1相的方案了。

这个更容易识别,4个扼流圈是3个0.60微亨和1个2.2微亨,显然是3+1相供电,MOS管数量14=4*3+2,所以是VDD供电每相4颗MOS,VDDNB供电两颗MOS。VDD的控制芯片是内置3个driver支持最高4相的ISL6312,在775主板上很常见。ISL6312是单一供电设计的PWM控制芯片,单独使用是不能支持分离供电设计的,为了实现分离供电,主板使用了一颗Fintek的F75125电源芯片,这颗芯片将K10 CPU发来的VDD串行VID(SVI)的信号翻译成并行VID(PVI)的内核电压VID信号输送给ISL6312,同时自己将VDDNB串行VID信号转换为信号电压,通过F78215单相buck控制器驱动1相供电生成北桥电压。相对地,ISL6324这种混合式芯片是另一种分离供电的设计方案。随着790GX主板的流行,基于ISL6323和ISL6324的4+1相供电方案非常常见了。

4个扼流圈3个半封闭和1个封闭式,3+1相供电,VDD供电每相3个MOS管,VDDNB两个MOS管。主控芯片是ISL6323,搭配了1颗driver。
Nehalem的分离供电设计(Split-Plane power delivery design on Nehalem)这一阵子关注X58主板的网友应该已经注意到,Nehalem主板除了环绕CPU的一圈供电以外,还要多出几相不知道给谁的供电。
EX58-UD3R
Nehalem/Bloomfield也引入了分离供电设计,CPU中QPI控制器和三通道DDR3内存控制器的部分称为“Uncore”,由独立电源供电。因为这部分功耗不算小,再加上超频需求,主板的Uncore供电以两相居多。上面这片主板使用了4+1相供电的配置,核心供电和Uncore供电用了两颗独立的PWM控制芯片(图中左下和右下),核心供电每相为双倍用料。
内存和芯片组供电(Memory and Chipset power delivery circuits)主板的内存VDD/VDDq以及芯片组VDD供电在以往是需求不高的,还能见到用线性供电为芯片组或内存提供电力,从+5V 或+3.3V通过一般是LDO(低压差稳压器)一类的器件转换出需要的电压,中间差值的部分就消耗在稳压器上变成了发热。随着内存工作电压由3.3V降低到2.5V再降低到1.8V、1.5V,芯片组核心电压也从1.5V降低至1.1V而需要的电流上升,线性电源的低效率和高发热变得不可接受,内存与芯片组供电纷纷转向了开关电源。
开关供电电路的标志性元件就是那个输出扼流圈,如果没有输出扼流圈那肯定不是开关供电电路。要确定供电的方式,我们就得找出这些扼流圈,在前面的图上我用红圈做了标记。
注意,内存和芯片组的开关供电就是单相或者多相的开关供电电路,和CPU供电一样会有输入输出滤波电容,同样也可能有输入扼流圈来减小输出对上一级电路的影响。在这张ABIT GD8主板上我们可以看到内存和芯片组供电的输入端都有一个黄色磁芯的环形扼流圈。输出电流比输入电流大,所以输出扼流圈采用了三股线并绕的方式,磁芯个头也要大一些。



内存供电使用+5V转换为DDR3的工作电压1.5V到2V多,因而耐压6V的电容是输入滤波电容,耐压4V的电容是输出滤波电容,由此确定了2微亨扼流圈是输出扼流圈。
芯片组供电使用+12V转换为芯片组的内核电压1.25V左右,因而耐压16V的电容是输入滤波电容,耐压4V的电容是输出滤波电容,由此确定了2微亨扼流圈是输出扼流圈。
芯片组供电使用+12V转换为芯片组的内核电压1.25V左右,因而耐压16V的电容是输入滤波电容,耐压4V的电容是输出滤波电容,由此确定了2微亨扼流圈是输出扼流圈。

这是货真价实的两相供电,每相使用一颗1.2微亨输出扼流圈和两颗SO-8衍生型的低内阻MOSFET。两个两相供电分别使用了一颗ISL6312进行控制,这可是4相供电的主板会用到的标准配置!在芯片组供电这边我们还能看到一颗1.2微亨的输入扼流圈,别搞错了哦。

(图:华硕P5Q Deluxe的内存供电)
这也是货真价实的两相供电,每相一对LFPAK封装的MOSFET,PWM控制芯片是uPI的uP6203
[ 新闻来源:互联网,更多精彩资讯请下载icspec App。如对本稿件有异议,请联系微信客服specltkj]
存入云盘 收藏
举报
全部评论
暂无评论哦,快来评论一下吧!

互联网
开创IC领域,共创美好未来!
查看更多
相关文章
银河微电投资3.1亿元建设高端分立器件基地
2025-07-14
银河微电拟投3.1亿元建设高端分立器件产业化基地
2025-07-11
上海某芯片团队几乎全裁
2025-06-16
芯片原产地解读,附18家美国芯片企业原产地详细分析
2025-05-29
美国暂缓对中国半导体产品加征关税,GPU和主板价格压力暂缓
2025-06-04
热门搜索
大联大调整!诠鼎、友尚、品佳,3合1
台积电拟退出氮化镓市场
华为
台积电
中芯国际
联发科
高通
英特尔
芯片